Automatic generation of generalised regular factorial designs
نویسندگان
چکیده
The R package planor enables the user to search for, and construct, factorial designs satisfying given conditions. The user specifies the factors and their numbers of levels, the factorial terms which are assumed to be non-zero, and the subset of those which are to be estimated. Both block and treatment factors can be allowed for, and they may have either fixed or random effects, as well as hierarchy relationships. The designs are generalised regular designs, which means that each one is constructed by using a design key and that the underlying theory is that of finite abelian groups. The main theoretical results and algorithms on which planor is based are developed and illustrated, with the emphasis on mathematical rather than programming details. Sections 3–5 are dedicated to the elementary case, when the numbers of levels of all factors are powers of the same prime. The ineligible factorial terms associated with users’ specifications are defined and it is shownhow they can be used to search for a design key by a backtrack algorithm. Then the results are extended to the case when different primes are involved, by making use of the Sylow decomposition of finite abelian groups. The proposed approach provides a unified framework for a wide range of factorial designs. © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Generalized Resolution and Minimum Aberration for Nonregular Fractional Factorial Designs
Seeking the optimal design with a given number of runs is a main problem in fractional factorial designs(FFDs). Resolution of a design is the most widely usage criterion, which is introduced by Box and Hunter(1961), used to be employed to regular FFDs. The resolution criterion is extended to non-regular FFG, called the generalized resolution criterion. This criterion is providing the idea of ge...
متن کاملAn algorithmic approach to finding factorial designs with generalized minimum aberration
Factorial designs are arguably the most widely used designs in scientific investigations. Generalized minimum aberration (GMA) and uniformity are two important criteria for evaluating both regular and non-regular designs. The generation of GMA designs is a non-trivial problem due to the sequential optimization nature of the criterion. Based on an analytical expression between the generalized wo...
متن کاملSelection of Non-Regular Fractional Factorial Designs When Some Two-Factor Interactions are Important
Non-regular two-level fractional factorial designs, such as Plackett–Burman designs, are becoming popular choices in many areas of scientific investigation due to their run size economy and flexibility. The run size of nonregular two-level factorial designs is a multiple of 4. They fill the gaps left by the regular twolevel fractional factorial designs whose run size is always a power of 2 (4, ...
متن کاملSome optimal criteria of model-robustness for two-level non-regular fractional factorial designs
We present some optimal criteria to evaluate model-robustness of non-regular two-level fractional factorial designs. Our method is based on minimizing the sum of squares of all the off-diagonal elements in the information matrix, and considering expectation under appropriate distribution functions for unknown contamination of the interaction effects. By considering uniform distributions on symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 113 شماره
صفحات -
تاریخ انتشار 2017